A Symmetric Rank-one Quasi Newton Method for Non-negative Matrix Factorization
نویسندگان
چکیده
As we all known, the nonnegative matrix factorization (NMF) is a dimension reduction method that has been widely used in image processing, text compressing and signal processing etc. In this paper, an algorithm for nonnegative matrix approximation is proposed. This method mainly bases on the active set and the quasi-Newton type algorithm, by using the symmetric rank-one and negative curvature direction technologies to approximate the Hessian matrix. Our method improves the recent results of those methods in Moreover, the object function decreases faster than many other NMF methods. In addition, some numerical experiments are presented in the synthetic data, imaging processing and text clustering. By comparing with the other six nonnegative matrix approximation methods, our experiments confirm to our analysis.
منابع مشابه
Approximation of Sequences of Symmetric Matrices with the Symmetric Rank-One Algorithm and Applications
The symmetric rank-one update method is well-known in optimization for its applications in the quasi-Newton algorithm. In particular, Conn, Gould, and Toint proved in 1991 that the matrix sequence resulting from this method approximates the Hessian of the minimized function. Extending their idea, we prove that the symmetric rank-one update algorithm can be used to approximate any sequence of sy...
متن کاملSymmetric Nonnegative Matrix Factorization for Graph Clustering
Nonnegative matrix factorization (NMF) provides a lower rank approximation of a nonnegative matrix, and has been successfully used as a clustering method. In this paper, we offer some conceptual understanding for the capabilities and shortcomings of NMF as a clustering method. Then, we propose Symmetric NMF (SymNMF) as a general framework for graph clustering, which inherits the advantages of N...
متن کاملA symmetric rank-one quasi-Newton line-search method using negative curvature directions
We propose a quasi-Newton line-search method that uses negative curvature directions for solving unconstrained optimization problems. In this method, the symmetric rank-one (SR1) rule is used to update the Hessian approximation. The SR1 update rule is known to have a good numerical performance; however, it does not guarantee positive definiteness of the updated matrix. We first discuss the deta...
متن کاملOn the connection between the conjugate gradient method and quasi-Newton methods on quadratic problems
It is well known that the conjugate gradient method and a quasi-Newton method, using any well-defined update matrix from the one-parameter Broyden family of updates, produce the same iterates on a quadratic problem with positive-definite Hessian. This equivalence does not hold for any quasi-Newton method. We discuss more precisely the conditions on the update matrix that give rise to this behav...
متن کاملNon-negative Matrix Factorization with Quasi-Newton Optimization
Non-negative matrix factorization (NMF) is an emerging method with wide spectrum of potential applications in data analysis, feature extraction and blind source separation. Currently, most applications use relative simple multiplicative NMF learning algorithms which were proposed by Lee and Seung, and are based on minimization of the Kullback-Leibler divergence and Frobenius norm. Unfortunately...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1305.5829 شماره
صفحات -
تاریخ انتشار 2013